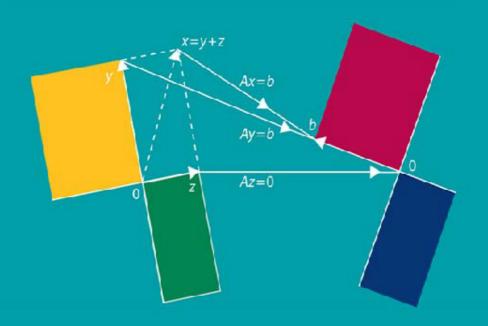
引论

线性代数

第五版



linear.neocities.org

译者: 云丹风青博士

请尊重智慧财产权,侵权必究!

自 序

本书是根据麻省理工学院教授 Gilbert Strang 所著的 Introduction to Linear Algebra (5th Edition) 翻译成中文版本,全文是反复推敲,重复再重复的校对检查,希望以最简洁的语句,最接近作者原意的内容呈现给国内的读者。这本书是原作者以第一人称视角进行写作,书上常会有神来之笔,读者可以细细品味。

本人从事高等教育数十年,获有工程博士学位,早年游学美国打下扎实的英文基础。曾经编写过十多本中文大学教科书,翻译过美版 Advanced Engineering Mathematics (over 1000 pages),发表过十多篇 SCI 论文,近年来一直在福建的高校担任校领导,作育英才,乐趣无穷。

2019 年清华大学第一次采用英文线性代数教科书,2020 年初 Corona Virus 肆虐,在此特殊时期闭门写作,希望为读者提供可以作为辅助教材的中文版本。中英相辅,比对参照,融会贯通,学习有成。本书的编排有以下几个特点:

- 1. 页码与原书百分百相同,原文书在第几页,中文版就在第几页。
- 2. 鼓励读者以原文教材为主,中文译本为辅,国际接轨与实质理解并重。
- 3. 本书的颜色排版尽量与原书相同,都是蓝黑两色版面。
- 4. 在翻译过程中发现的原文错误会以蓝色标示,下方以【...】注解,日后一起 反馈给原作者。
- 5. 每句每字都是译者自己翻译打字,若有疏漏或错误还请反馈至邮箱。

翻译这本书工作量很大,也没有与出版社签订合作协议,纯粹是个人的喜好, 更需要读者的支持与赞助,请尊重版权,尊重个人的智慧与劳动成果。

英文教科书正文共有 565 页,反馈与讨论,PDF 打印密码,打赏二维码,请联系:

网址: linear.neocities.org

EMail: 876152660@gq.com

您的支持是译者持续奋斗的动力!
Thank you very much! 2020/02/10

目 录

第一章	向量介绍	•	•	•	•	•	•	•	•	•	•	1
1.1	向量与线性组合	۰	•	•	•	•	•	•	•	•	•	2
1.2	长度与点积	۰	•	•	•	•	•	•	•	•	•	11
1.3	矩阵	•	•	•	•	•	•	•	•	•	•	22
第二章	求解线性方程式											31
2.1	向量与线性方程式	•	•	•	•	•	•	•	•	•	•	31
2.2	消元法的概念	۰	•	•	•	•	•	•	•	•	•	46
2.3	使用矩阵消元	۰	•	•	•	•	•	•	•	•	•	58
2.4	矩阵运算规则	•	•	•	•	•	•	•	•	•	•	70
2.5	逆矩阵	•	•	•	•	•	•	•	•	•	•	83
2.6	消元=分解: A=LU	•	۰	۰	•	۰	•	•	•	•	۰	97
2.7	转置与排列	•	•	•	•	•	•	•	•	•	•	109
第三章	向量空间与子空间											123
3.1	向量空间	•	•	•	•	•	•	•	•	•	•	123
3.2	A 的零空间:求解 $Ax = 0$ 与 $Rx = 0$	0		•	•	•	•	۰	•	•		135
3.3	Ax = b 的完整解	•	•	•	•	•	•	•	•	•	•	150
3.4	无关,基底与维度	•	•	•	•	•	•	•	•	•	•	164
3.5	四个子空间的维度	•	•	•	•	•	•	•	•	•	•	181
第四章	正交性质											194
4.1	四个子空间的正交性质	•	•	•	•	•	•	•	•	•	•	194
4.2	投影	•	•	•	•	•	•	•	•	•	•	206
4.3	最小平方近似	•	۰	۰	•	•	•	•	•	•	۰	219
4.4	正交单位基底与格莱姆-施密特	•	۰	۰	•	•	•	•	•	•	۰	233
第五章	行列式	•	•	•	•	•	•	•	•	•	•	247
5.1	行列式的性质	•	•	•	•	•	•	•	•	•	•	247
5.2	排列与余因子	•	•	•	•	۰	•	•	•	•	۰	258
5.3	克拉玛规则,逆矩阵与体积	•	•	•	•	•	•	•	•	•	•	273
第六章	固有值与固有向量	•	•	•	•	•	•	•	•	•	•	288
6.1	固有值引论	•	•	•	•	•	•	•	•	•	•	288
6.2	对角化矩阵	•	•	•	•	•	•	•	•	•	•	304
6.3	微分方程式系统	۰	•	•	•	•	•	•	•	•	•	319
6.4	对称矩阵	•	•	•	•	•	•	•	•	•	•	338

6.5	正定矩阵	•	•	•	•	•	•	•	•	•	•	350
第七章	奇异值分解(SVD)											364
7.1	线性代数做图像处理	•	•	•	•	•	•	•	•	•	•	364
7.2	SVD 的基底与矩阵	۰	•	•	•	•	•	•	•	•	•	371
7.3	主要分量分析(SVD做 PCA)	•	•	•	•	•	•	•	•	•	•	382
7.4	SVD 的几何	۰	•	•	•	•	•	•	•	•	•	392
第八章 组	浅性转换											401
8.1	线性转换的概念	۰	•	•	•	•	•	•	•	•	•	401
8.2	线性转换的矩阵	•	•	•	•	•	•	•	•	•	•	411
8.3	搜寻好基底	۰	•	•	•	•	•	•	•	•	•	421
第九章	夏数向量与矩阵											430
9.1	复数	۰	•	•	•	•	•	•	•	•	•	431
9.2	厄米与幺正矩阵	۰	•	•	•	•	•	•	•	•	•	438
9.3	快速傅里叶转换	۰	•	•	•	•	•	•	•	•	•	445
第十章	並用											452
10.1	图形与网络	۰	•	•	•	•	•	•	•	•	•	452
10.2	工程中的矩阵	۰	•	•	•	•	•	•	•	•	•	462
10.3	马可夫矩阵,人口与经济	•	•	•	•	•	•	•	•	•	•	474
10.4	线性规划	۰	•	•	•	•	•	•	•	•	•	483
10.5	傅里叶级数:函数的线性代数	۰	•	•	•	•	•	•	•	•	•	490
10.6	电脑图形	۰	•	•	•	•	•	•	•	•	•	496
10.7	密码学的线性代数	۰	•	•	•	•	•	•	•	•	•	502
第十一章	数值线性代数											508
11.1	实际的高斯消元法	۰	•	•	•	•	•	•	•	•	•	508
11.2	范数与条件数	۰	•	•	•	•	•	•	•	•	•	518
11.3	迭代法与预调节器	۰	•	•	•	•	•	•	•	•	•	524
第十二章	概率与统计的线性代数											535
12.1	平均值,方差与概率	۰	•	•	•	•	•	•	•	•	•	535
12.2	协方差矩阵与联合概率	۰	•	•	•	•	•	•	•	•	•	546
12.3	多元高斯与加权最小平方	۰	•	•	•	•	•	•	•	•	•	555
矩阵分解												563
线性代数的六个伟大定理		۰	•	•	•	•	•	•	•	•	•	565
概括线性代数		_	_	_	_			_		_		565

第一章

向量介绍

线性代数的中心是两个运算——都是针对向量。我们把向量相加得到v + w,我们用数字c = dw,组合这两种运算(cv m) 相对 dw)得到**线性组合**cv + dw。

$$c\mathbf{v} + d\mathbf{w} = c \begin{bmatrix} 1 \\ 1 \end{bmatrix} + d \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} c + 2d \\ c + 3d \end{bmatrix}$$

范例
$$\mathbf{v} + \mathbf{w} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
, 是 $c = d = 1$ 的组合。

线性组合是这个主题中最重要的概念!有时候我们需要一个特定的组合,选择 c=2 与 d=1 产生 cv+dw=(4,5)。其他时候我们想要 v 与 w 所有的组合(来自所有的 c 与 d)。

向量 cv 沿着一条直线,当 w 不在这条线上时,**组合** cv + dw **会形成整个二维平面**。如果从 4 维空间的 4 个向量 u, v, w, z 开始,他们的组合 cu + dv + ew + fz 好像会形成空间——但不是绝对。向量以及他们的组合可以落在一个平面或是一条直线。

第一章说明建立所有事物的中心观念,我们从二维与三维向量开始,这些向量比较容易制图,之后再讨论更高的维度。线性代数最深刻的特征在于如何平顺的将这些步骤扩展到 n 维空间。纵使不可能画出 10 维的向量,你内心的蓝图依然完全正确。

这就是本书的目的(推进到 n 维空间)。第一步是段落 1.1 与 1.2 的运算,段落 1.3 介绍三个基本概念。

- 1.1 向量加法v+w与线性组合cv+dw。
- 1.2 两个向量的点积(dot product) $v \cdot w$ 与长度 $||v|| = \sqrt{v \cdot v}$ 。
- 1.3 矩阵 A, 线性方程式 Ax = b, 解 $x = A^{-1}b$.

1.1 向量与线性组合

1 3v + 5w 是向量 v 与 w 的**线性组合** cv + dw 的一个典型。

2 当
$$\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
与 $\mathbf{w} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$,上述的组合是 3 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ +5 $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ = $\begin{bmatrix} 3+10 \\ 3+15 \end{bmatrix}$ = $\begin{bmatrix} 13 \\ 18 \end{bmatrix}$ 。

3 向量
$$\begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$
在 xy 平面横跨到 $x = 2$ 再往上到 $y = 3$ 。

4 组合
$$c\begin{bmatrix}1\\1\end{bmatrix}+d\begin{bmatrix}2\\3\end{bmatrix}$$
形成整个 xy 平面,他们产生每个 $\begin{bmatrix}x\\y\end{bmatrix}$ 。

5 组合
$$c\begin{bmatrix}1\\1\\1\end{bmatrix}+d\begin{bmatrix}2\\3\\4\end{bmatrix}$$
形成 xyz 空间中的一个平面。 $\begin{bmatrix}1\\1\\1\end{bmatrix}$, $\begin{bmatrix}3\\4\\5\end{bmatrix}$ 形成相同的平面。

$$c + 2d = 1$$

6 但是 $c + 3d = 0$ 无解,因为它的右侧 $\begin{bmatrix} 1 \\ 0 \\ c + 4d = 0 \end{bmatrix}$ 不在那个平面上。

"你无法把苹果与橙子相加",以奇怪的方式来说,向量也是一样的理由。 我们有两个个别的数字 v_1 与 v_2 ,这项配对产生**二维向量 v_2**

列向量
$$\mathbf{v}$$
 $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ $v_1 = \mathbf{v}$ 的第一分量 $v_2 = \mathbf{v}$ 的第二分量

我们把 ν 写成一列(column),而不是一行(row),重点在于单一的字母 ν (**粗斜体字**) 代表这项配对数字 ν 1 与 ν 2 (浅色斜体字)。

我们不是把 v_1 与 v_2 相加,我们是把**向量相加**。v 与 w 的第一分量与第二分量 仍然分开:

向量加法
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 与 $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ 相加得到 $\mathbf{v} + \mathbf{w} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \end{bmatrix}$

减法追随相同的概念: $\mathbf{v} - \mathbf{w}$ 的分量是 $v_1 - w_1$ 与 $v_2 - w_2$ 。

另一个基础运算是纯量(scalar)乘法,向量可以用 2 或-1 或任意数 c 去乘,要求出 2v,用 2 乘 v 的每个分量:

纯量乘法
$$2\mathbf{v} = \begin{bmatrix} 2v_1 \\ 2v_2 \end{bmatrix} = \mathbf{v} + \mathbf{v}, \quad -\mathbf{v} = \begin{bmatrix} -v_1 \\ -v_2 \end{bmatrix}.$$

cv 的分量是 cv_1 与 cv_2 ,数字 c 称为"纯量"。

注意-v与v的总和(sum)是零向量,以粗体0表示,与一般的数字0不相同,向量0的分量是0与0。请原谅我一直在反复谈论向量与分量的差别,线性代数就是建立在v+w与cv与dw的运算——向量加法与纯量乘法。

线性组合

我们现在结合加法与纯量乘法产生v与w的"**线性组合**",c 乘v以及 d 乘w,然后相加得到 cv+dw。

cv与 dw 的总和是 线性组合 cv + dw。

四种特殊的线性组合是:和,差,零,纯量乘积 cv:

1v + 1w = 向量的和,如图 1.1a

1v - 1w = 向量的差,如图 1.1b

0v + 0w = 零向量

cv + 0w = 沿着 v 方向的向量 cv

零向量永远是可能的组合(它的系数为零),每次我们看到向量的"空间(space)"都会包含零向量。从大局来看,取得v = w所有的线性组合就是线性代数的工作。

图形让你看到向量,对代数来说,我们只需要向量的分量(例如 4 与 2)。向量 ν 由箭头表示,箭头往右横跨 ν_1 = 4 个单位,再往上走 ν_2 = 2 个单位,终点的 x,y 坐标等于 4,2。这个点是向量的另外一种表示法——我们有三种方式来描述 ν :

向量 v 表示法 两个数字 由(0,0)出发的箭头 平面上的点

我们用数字做加法,我们用箭头视觉化 v + w:

向量加法(头到尾), v 的终点就是 w 的起点

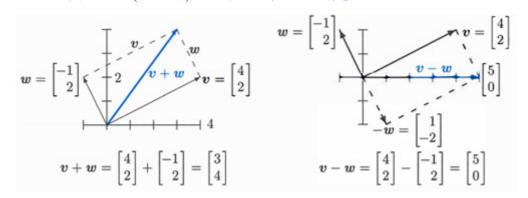


图 1.1: 向量加法 v + w = (3, 4)产生平行四边形的对角线,w 的反向是-w,右侧的线性组合是 v - w = (5, 0)。

我们先沿着v再沿着w前进,或者我们沿着v + w走对角捷径;我们也可以 先沿着w再沿着v。换言之,w + v与v + w 的答案相同。沿着平行四边形(本例题 是矩形)存在不同的前进方向。 具有两个分量的向量对应到 xy 平面上的一个点,v 的分量就是点的坐标: $x = v_1$ 与 $y = v_2$ 。向量从(0,0)出发,箭头在点(v_1 , v_2)结束。我们现在允许向量有三个分量 (v_1 , v_2 , v_3)。

xy 平面换成三维的 xyz 空间,以下是一些典型向量(依然是列向量,只是有 3 个分量):

$$\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \quad \stackrel{L}{\Rightarrow} \quad \mathbf{w} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \quad \stackrel{L}{\Rightarrow} \quad \mathbf{v} + \mathbf{w} = \begin{bmatrix} 3 \\ 4 \\ 3 \end{bmatrix}$$

向量v对应到三维空间的一个箭头,通常箭头由**原点**出发,原点是xyz轴的交点,坐标为(0,0,0),箭头终点的坐标是 v_1,v_2,v_3 。**列向量,原点出发的箭头与箭头的终点**,这三种表示法之间有着完美的适配。

平面向量(x, y)与3维空间的(x, y, 0)不相同!

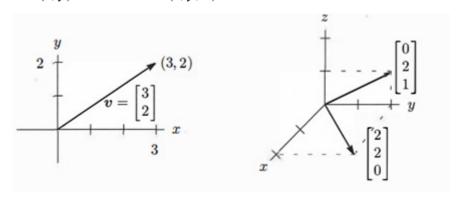


图 1.2: 向量
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
与 $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ 对应点 (x, y) 与 (x, y, z)

从此以后
$$v = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$
也可以写成 $v = (1, 1, -1)$

写成行形式(在括号中)的理由是为了节省空间,但是v = (1, 1, -1)不是行向量! 实际上还是列向量,只是暂时横躺而已。行向量[1 1 -1]是绝对不同的,虽然它有相同的三个分量。 1×3 的行向量是 3×1 的列向量v 的"转置"(transpose)。

三维空间中, $\mathbf{v} + \mathbf{w}$ 仍然是每次计算一个分量,向量总和的分量是 $\mathbf{v}_1 + \mathbf{w}_1$ 与 $\mathbf{v}_2 + \mathbf{w}_2$ 与 $\mathbf{v}_3 + \mathbf{w}_3$,你了解如何在 4 或 5 或 \mathbf{n} 维空间中相加向量。当 \mathbf{w} 从 \mathbf{v} 的终点出发,第三边是 $\mathbf{v} + \mathbf{w}$,平行四边形的另一个环绕方向是 $\mathbf{w} + \mathbf{v}$ 。问题:这四边是否在同一个平面?答案:是。向量的和 $\mathbf{v} + \mathbf{w} - \mathbf{v} - \mathbf{w}$ 刚好走完一圈得到 向量。

三维空间中典型的三个向量的线性组合是 u + 4v - 2w:

分别用 1, 4, -2 乘再相加的线性组合
$$\begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} + 4 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} - 2 \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 9 \end{bmatrix}$$

重要问题

一个向量 u,唯一的线性组合是倍数 cu。对于两个向量,线性组合是 cu + dv。对三个向量,线性组合是 cu + dv + ew。你可以由一个组合跨一大步到**所有的组合**吗?允许每个 c 与 d 与 e,假设 u, v, w 是三维空间中的向量:

- 1. 所有 cu 的组合,图形是什么?
- 2. 所有 cu + dv 的组合,图形是什么?
- 3. 所有 cu + dv + ew 的组合, 图形是什么?

上述的答案与特定向量 u, v, w 有关,如果他们都是零向量(非常极端案例),所有的线性组合都是零。如果他们是典型的非零向量(随机选定分量),这里有三种答案。这是我们主题的关键:

- 1. 所有 cu 的组合形成一条**通过(0, 0, 0)的直线**。
- 2. 所有 cu + dv 的组合形成一个通过(0, 0, 0)的平面。
- 3. 所有 cu + dv + ew 的组合形成**三维空间**。

因为 c 可以是 0,零向量(0, 0, 0)会在直线上; 当 c 与 d 都是 0,零向量会在平面上。向量 cu 形成直线是无限长(正向与反向),我特别要求你去思考全部 cu + dv 形成的平面(三维空间中两个向量的组合)。

一条直线上的所有 cu 加到另一条直线上的所有 dv 会形成图 1.3 的平面。

当我们引入第三向量w时,ew的倍数得到第三条直线。假设第三条直线不在u与v形成的平面上,则ew与cu+dv的组合可以形成整个三维空间。

这是典型的状况!线,平面,然后空间,但是还有其他可能性存在。当 w 恰好等于 cu + dv,第三向量 w 落在前两个向量形成的平面上,u, v, w 的组合无法离开 uv 平面,我们没有得到整个三维空间。请思考问题 1 的特殊例子。



图 1.3: (a) 穿过u 的直线。(b) 包含穿过u与v直线的平面

主要观念的复习

- 1. 二维空间的向量 ν 具有两个分量 ν 1. 与 ν 2。
- 2. $\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2)$ 与 $c\mathbf{v} = (cv_1, cv_2)$, 每次求取一个分量。
- 3. 三个向量 u, v, w 的线性组合是 cu + dv + ew。
- 4. 选取所有u或是u,v或是u,v,w的线性组合,在三维空间中,这些组合典型的形成一条直线或是一个平面或是整个空间 \mathbf{R}^3 。

已解范例

1.1A v = (1, 1, 0)与 w = (0, 1, 1)的线性组合会形成 \mathbb{R}^3 的一个平面,请描述这个平面,并且找出一个不是 v 与 w 的线性组合的向量——不在该平面上。

解 v = w 形成的平面包含所有组合 cv + dw,平面上的向量允许任意的 c = d。图 1.3 的平面形成两条线之间的区域。

组合
$$c\mathbf{v} + d\mathbf{w} = c \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + d \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} c \\ c + d \\ d \end{bmatrix}$$
 形成一个平面。

这个平面的四个向量是(0,0,0), (2,3,1), (5,7,2)以及 $(\pi,2\pi,\pi)$ 。第二分量 c+d 永远是第一与第三分量的总和。大部分的向量,例如(1,2,3)就不在这个平面上,因为 $2 \neq 1+3$ 。

通过(0,0,0)平面的另一种描述方法是知道 n=(1,-1,1)与平面**垂直**,段落 1.2 测试点积来确认 90°角: $v\cdot n=0$ 与 $w\cdot n=0$ 。垂直向量的点积为零。

1.1B v = (1, 0)与 w = (0, 1),描述所有 cv 的点,当(1) 所有的数值 c。(2) 非负数值 $c \ge 0$ 。将 cv 加上所有 dw,描述所有的 cv + dw。

解

- (1) 当 c 是任意数时,向量 cv = (c, 0)是沿着 x 轴(v 的方向)的等距离点,他们包含(-2, 0), (-1, 0), (0, 0), (1, 0), (2, 0)。
- (2) 当 $c \ge 0$,向量 cv 形成一条**半线**,就是正 x 轴。这条半线从(0, 0)开始,此时 c = 0。它包含了点(100, 0)与(π , 0),但不包含(-100, 0)。
- (1') 加上所有的向量 dw = (0, d),会在这些等距离点 cv 上放置一条垂直线,我们得到无限多来自全部的数值 c 与任意数值 d 的平行线。
- (2') 加上所有的向量 dw = (0, d),会在半线上的每一个 cv 放置一条垂直线,现在我们有一个**半平面**,xy 平面的右半部分有任意的 $x \ge 0$ 与任意的 y。
- **1.1C** 求出 c 与 d 的两个方程式, 使得**线性组合** cv + dw 等于 b:

$$\mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

- 解 在应用数学中,很多问题都有两个部分:
 - 1. 建模(modeling)部分:利用一些方程式来表示问题。
 - 2. 计算部分: 利用快速又正确的演绎法求解方程式。

在此我们只讨论第一部分(方程式),第二章会介绍第二部分(求解)。我们的范例适配一个线性代数的基础模型:

求
$$n$$
 个数值 $c_1,...,c_n$ 使得 $c_1v_1+...+c_nv_n=b$

当 n=2 我们可以找到关于 c's 的公式,第二章介绍的"消元法"适用于远超过 n=1000 的系统。当 n 大于 10 亿时,参考第 11 章。此处 n=2:

向量方程式
$$c\mathbf{v} + d\mathbf{w} = \mathbf{b}$$
 $c \begin{bmatrix} 2 \\ -1 \end{bmatrix} + d \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

c与d所需要的方程式来自个别的两个分量:

两个一般方程式
$$2c-d=1$$
$$-c+2d=0$$

每个方程式产生一条直线,两条直线相交于解 c = 2/3, d = 1/3。也可以把这个问题 视为**矩阵方程式**,这就是我们想要往下介绍的:

2×2 矩阵
$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

问题集 1.1

问题 1-9 有关向量加法以及线性组合。

描述下列所有的线性组合的几何意义(线,面,或是整个 \mathbb{R}^3):

$$(a)\begin{bmatrix}1\\2\\3\end{bmatrix} = \begin{bmatrix}3\\6\\9\end{bmatrix} \quad (b)\begin{bmatrix}1\\0\\0\end{bmatrix} = \begin{bmatrix}0\\2\\3\end{bmatrix} \quad (c)\begin{bmatrix}2\\0\\0\end{bmatrix} = \begin{bmatrix}0\\2\\2\end{bmatrix} = \begin{bmatrix}2\\2\\3\end{bmatrix}$$

- 2 在单一xy 平面上画出 $v = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$ 与 $w = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$ 以及v + w与v w。
- 3 若 $v + w = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$ 与 $v w = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$, 计算并画出向量 v 与 w.
- 4 从 $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ 与 $\mathbf{w} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$,计算 3 $\mathbf{v} + \mathbf{w}$ 与 $c\mathbf{v} + d\mathbf{w}$ 的分量。
- 计算 u+v+w 以及 2u+2v+w。你如何知道 u,v,w 在同一个平面上? 5

因为
$$w = cu + dv$$

这些直线在同一平面
求 c 与 d

因为
$$w = cu + dv$$

这些直线在同一平面
求 $c = d$
$$u = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v = \begin{bmatrix} -3 \\ 1 \\ -2 \end{bmatrix}, w = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$$

- 6 v = (1, -2, 1)与 w = (0, 1, -1)的每个组合的分量总和是 。 求 c 与 d 使得 cu + dw = (3, 3, -6)。为什么不可能是(3, 3, 6)?
- 在 xv 平面上标示出九个线性组合的点:

$$c\begin{bmatrix} 2\\1 \end{bmatrix} + d\begin{bmatrix} 0\\1 \end{bmatrix}$$
, 其中 $c = 0, 1, 2 = 0, 1, 2$

- 图 1.1 的平行四边形的对角线是 v + w,另一个对角线为何? 这两个对角线向 8 量的总和是多少? 画出向量的总和。
- 如果平行四边形的三个角点是(1,1), (4,2)与(1,3),则三个可能的第四点为何? 画出其中两个点。

问题 10-14 有关图 1.4 的立方体与时钟的特殊向量。

- 10 立方体上的哪个点是i+j? 哪个点是向量i=(1,0,0)与j=(0,1,0)与k=(0,0,0)1)的总和? 描述立方体上所有的点(x, y, z)。
- 11 单位立方体的四个角点是(0,0,0), (1,0,0), (0,1,0), (0,0,1), 其他四个角点为 何? 求出立方体的中心点坐标。六个面的中心点坐标是 。立方体有几 个边?
- 12 **复习问题**。在 xyz 空间中,i = (1, 0, 0)与 i + j = (1, 1, 0)的所有线性组合形成的 平面为何?

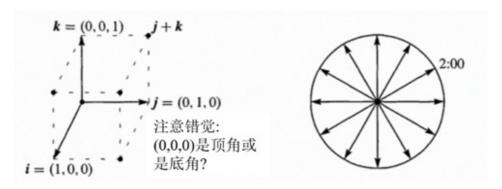


图 1.4: i,j,k 构成的单位立方体与 12 个时钟向量

- 13 (a) 考虑 12 个由中心点指向时钟 1:00,2:00, ..., 12:00 的向量,其总和 V为何?
 - (b) 如果把 2:00 的向量移走,为什么其余 11 个时钟向量的总和指向 8:00?
 - (c) 在 2:00 的向量 $\mathbf{v} = (\cos \theta, \sin \theta)$,求出 $\mathbf{x} = \mathbf{y}$ 的分量。
- 14 假设 12 个向量是由底部的 6:00 出发而不是由中心的(0, 0)出发, 指向 12:00 的向量变成两倍的(0, 2), 则全部 12 个新的时钟向量总和为何?

问题 15-19 深入讨论 v 与 w 的线性组合(图 1.5a)。

- 15 图 1.5a 显示 v/2 + w/2, 请标示点 3v/4 + w/4 与 v/4 + w/4 与 v + w。
- 16 标示点-v + 2w 以及当 c + d = 1 时所有可能的 cv + dw。当 c + d = 1 时,画出所有组合的直线。
- 17 标示点 v/3 + w/3 与 2v/3 + 2w/3。 cv + cw 会形成哪条直线?
- 18 限制 $0 \le c \le 1$ 月 $0 \le d \le 1$,画出 cv + dw 所有的组合形成的区域。
- 19 只限制 $c \ge 0$ 且 $d \ge 0$,画出 cv + dw 所有的组合形成的"锥形(cone)"。

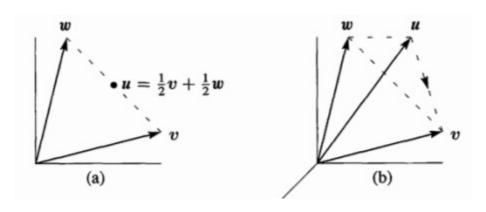


图 1.5: 问题 15-19 的平面

问题 20-25 的三维空间

问题 20-25 处理三维空间向量 u, v, w。(见图 1.5b)。

- 20 标示图上 u/3 + v/3 + w/3 以及 u/2 + w/2 的位置。挑战问题: c, d, e 在什么限制条件下,cu + dv + ew 会形成图上的虚线三角形? 要想留在三角形内,一个要求是 $c \ge 0$, $d \ge 0$, $e \ge 0$ 。
- 21 虚线三角形的三个边是 v u, w v, u w, 他们的总和是____。画出环绕平面三角形的"头至尾"的加法: (3,1) + (-1,1) + (-2,-2)。
- 22 当 $c \ge 0$, $d \ge 0$, $e \ge 0$ 且 $c + d + e \le 1$, 画出 cu + dv + ew 覆盖的金字塔(pyramid) 区域。确认(u + v + w)/2 是否在金字塔之内?
- 23 如果考虑 u, v, w 所有的线性组合,有没有向量无法由 cu + dv + ew 得到?如果 u, v, w 全部位于,会有不同的答案。
- 24 哪些向量是u与v的线性组合,同时也是v与w的线性组合?
- 25 画出向量 u, v, w,使得他们的组合 cu + dv + ew 只形成一条直线。求出向量 u, v, w 使得组合 cu + dv + ew 只形成一个平面。
- 26 什么样的组合 $c\begin{bmatrix}1\\2\end{bmatrix}+d\begin{bmatrix}3\\1\end{bmatrix}$ 得到 $\begin{bmatrix}14\\8\end{bmatrix}$? 将方程式表示成线性组合的系数 c与 d 的两个方程式。

挑战问题

- 27 在 4 维空间的立方体会有几个角点? 有几个 3 维的面? 有几个边? 一个典型的角点在(0,0,1,0), 一个典型的边会走到(0,1,0,0)。
- 28 求出向量v = w,使得v + w = (4, 5, 6)且v w = (2, 5, 8)。这是一个有____个 未知数的方程式? 要有相同数量的方程式才能求出这些数值。
- 29 三个向量 $\mathbf{u} = (1, 3), \mathbf{v} = (2, 7), \mathbf{w} = (1, 5),$ 找出两种不同的线性组合得到 $\mathbf{b} = (0, 1)$ 。稍微变动一下题目:如果我随意选出三个平面上的向量 $\mathbf{u}, \mathbf{v}, \mathbf{w}$,是不是永远存在两种不同的线性组合可以得到 $\mathbf{b} = (0, 1)$?
- 30 $\mathbf{v} = (a, b)$ 与 $\mathbf{w} = (c, d)$ 的线性组合可以得到一个平面,除非_____。找出四个4维空间的向量 $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}$ 使得他们的线性组合 $c\mathbf{u} + d\mathbf{v} + e\mathbf{w} + f\mathbf{z}$ 产生4维空间的所有向量(b_1, b_2, b_3, b_4)。
- 31 写下 c, d, e 的方程式, 使得 $c\mathbf{u} + d\mathbf{v} + e\mathbf{w} = \mathbf{b}$ 。你可以找出满足 \mathbf{b} 的 c, d, e 吗?

$$\boldsymbol{u} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} \qquad \boldsymbol{v} = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix} \qquad \boldsymbol{w} = \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix} \qquad \boldsymbol{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

1.2 长度与点积

1.
$$v = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 与 $w = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ 的 "点积"是 $v \cdot w = (1)(4) + (2)(5) = 4 + 10 = 14$ 。

2.
$$\mathbf{v} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$
 与 $\mathbf{w} = \begin{bmatrix} 4 \\ -4 \\ 4 \end{bmatrix}$ 垂直,这是因为 $\mathbf{v} \cdot \mathbf{w}$ 是零。(1)(4) + (3)(-4) + (2)(4) = $\mathbf{0}$ 。

3.
$$\mathbf{v} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$
 的长度平方是 $\mathbf{v} \cdot \mathbf{v} = 1 + 9 + 4 = 14$,长度是 $\|\mathbf{v}\| = \sqrt{14}$ 。

4.
$$u = \frac{v}{\|v\|} = \frac{v}{\sqrt{14}} = \frac{1}{\sqrt{14}} \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$
 有长度 $\|u\| = 1$,检验 $\frac{1}{14} + \frac{9}{14} + \frac{4}{14} = 1$ 。

5.
$$\mathbf{v}$$
与 \mathbf{w} 之间的角度 θ 有 $\cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|}$ 。

6.
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
与 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 之间的角度有 $\cos \theta = \frac{1}{(1)(\sqrt{2})}$,则角度 $\theta = 45^{\circ}$ 。

7. 所有的角都有
$$|\cos \theta| \le 1$$
,所以所有的向量都有 $|v \cdot w| \le ||v|| ||w||$ 。

第一个段落回避了向量乘法的问题,我们现在来定义 v 与 w 的点积 (dot product),这种乘法包含了个别的乘积 v_1w_1 与 v_2w_2 ,但是没有停在这里,这两个数字相加得到一个数字 $v \cdot w$ 。

这是几何的段落(向量的长度与两向量之间夹角的余弦)。

两个向量 $v = (v_1, v_2)$ 与 $w = (w_1, w_2)$ 的**点积**或**内积**是数字 $v \cdot w$:

$$\mathbf{v} \cdot \mathbf{w} = v_1 w_1 + v_2 w_2 \tag{1}$$

范例 1 向量 v = (4, 2)与 w = (-1, 2)有零点积:

数学里面的 0 一直是特殊的数字。对于点积,它表示这两个向量垂直,夹角 90°。当我们在图 1.1 中作图,我们看到了矩形(不只是任意平行四边形)。垂直向量最明显的例子是沿着 x 轴的 i = (1, 0)与沿着 y 轴的 j = (0, 1),再一次点积是 $i \cdot j$ = 0 + 0 = 0,这些向量 i 与 j 形成**直角**。

向量 v = (1, 2)与 w = (3, 1)的点积是 5,很快的 $v \cdot w$ 就会显示 v = v 与 w 之间的夹角(不是 90°)。请验证 $w \cdot v$ 也是 5。

v·w 与w·v的点积相等,无关v与w的顺序。

范例 2 放一个重量 4 的东西在点 x = -1(零的左边),放一个重量 2 的东西在点 x = 2(零的右边),x 轴会在中心点取得平衡(好像跷跷板),重量取得平衡是因为点积 (4)(-1) + (2)(2) = 0。

这个例子是典型的科学工程,重量的向量是 $(w_1, w_2) = (4, 2)$,距离中心点的距离向量是 $(v_1, v_2) = (-1, 2)$ 。重量乘距离 $v_1w_1 = v_2w_2$ 得到 "矩(moments)",跷跷板的平衡方程式是 $v_1w_1 + v_2w_2 = 0$ 。

范例 3 点积在经济与商业都会用到,比如我们要买卖 3 个商品,他们的单价分别是 (p_1, p_2, p_3) ——这是"价格向量";我们买或卖的数量为 (q_1, q_2, q_3) ,卖的时候取正号,买的时候取负号。单价 p_1 的商品卖出 q_1 个得到 p_1q_1 ,全部收入(数量 q 乘价格 p)就是在**三维空间的点积** $q \cdot p$:

收入 =
$$(q_1, q_2, q_3) \cdot (p_1, p_2, p_3) = q_1p_1 + q_2p_2 + q_3p_3 =$$
 点积

零点积表示账目平衡。如果 $\mathbf{q} \cdot \mathbf{p} = 0$,全部销售额等于全部买进额, \mathbf{p} 垂直 \mathbf{q} (在三维空间)。一家超市有几千种货品,货物的维度会非常高。

小注释: 电子表格在管理中非常重要,可以计算线性组合与点积,在屏幕上看到的是个矩阵。

重点 对于 \mathbf{v} 与 \mathbf{w} ,每个 \mathbf{v}_i 乘 \mathbf{w}_i ,则 $\mathbf{v} \cdot \mathbf{w} = \mathbf{v}_1 \mathbf{w}_1 + ... + \mathbf{v}_n \mathbf{w}_n$ 。

长度与单位向量

有个重要的案例就是向量**自己与自己**的点积,此时 v = w。当向量 v = (1, 2, 3),自己与自己的点积为 $v \cdot v = ||v||^2 = 14$:

点积
$$\mathbf{v} \cdot \mathbf{v}$$
 是长度的平方 $\|\mathbf{v}\|^2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1 + 4 + 9 = 14.$

现在向量之间的角度不是 90°而是 0°,v 与自己不垂直所以点积不是 0。点积 $v \cdot v$ 给出 v 的长度平方。

定义 向量 ν 的长度 || ν || 等于 ν · ν 的平方根:

长度=
$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = (v_1^2 + v_2^2 + \dots + v_n^2)^{1/2}$$

在二维的长度是 $\sqrt{{v_1}^2+{v_2}^2}$,在三维的长度是 $\sqrt{{v_1}^2+{v_2}^2+{v_3}^2}$,这样的计算得到 v=(1,2,3)的长度是 $\|v\|=\sqrt{14}$ 。

此处|| $\mathbf{v} \parallel = \sqrt{\mathbf{v} \cdot \mathbf{v}}$ 是代表向量的箭头的一般长度。如果分量是 1 与 2,箭头就是图 1.6 所示直角三角形的第三边,毕氏定理 $a^2 + b^2 = c^2$ 得到三边的关系是 $1^2 + 2^2 = \|\mathbf{v}\|^2$ 。

对于 v = (1, 2, 3)的长度来说,我们使用直角三角形的公式两次。位于基底的向量(1, 2, 0)的长度是 $\sqrt{5}$,基底向量与直線向上的向量(0, 0, 3)垂直,所以盒子的对角线长度 $||v|| = \sqrt{5+9} = \sqrt{14}$ 。

四维向量的长度等于 $\sqrt{v_1^2+v_2^2+v_3^2+v_4^2}$,于是向量(1, 1, 1, 1)的长度是 $\sqrt{1^2+1^2+1^2+1^2}=2$,这是一个四维空间的单位立方体的对角线长度。n 维空间立方体的对角长度是 \sqrt{n}

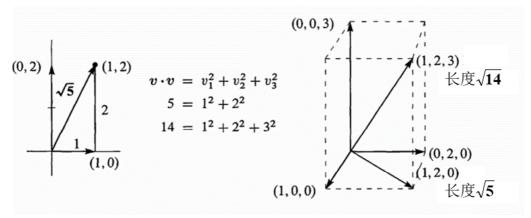


图 1.6: 二维与三维向量的长度 $\sqrt{v \cdot v}$

单位这个词通常用来表示某种测量值等于1,单位价格是指一个物品的价格,单位立方体的边长为1,单位圆的半径为1。现在讨论"单位向量"的意义。

定义 单位向量 u 是长度为 1 的向量, $u \cdot u = 1$ 。

举例来说四维的单位向量是 u = (1/2, 1/2, 1/2, 1/2),则 $u \cdot u = 1/4 + 1/4 + 1/4 + 1/4 + 1/4 = 1$ 。向量 v = (1, 1, 1, 1),除以本身的长度||v|| = 2 得到单位向量。

范例 4 沿着 x 轴与 y 轴的标准单位向量写成 i 与 j,在 xy 平面中,单位向量与 x 轴形成夹角 θ ,这个单位向量就是($\cos\theta$, $\sin\theta$)。

单位向量
$$i = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $j = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $u = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$

当 θ = 0,水平向量 \boldsymbol{u} 就是 \boldsymbol{i} ,当 θ = 90°(或 π /2 径度),垂直向量就是 \boldsymbol{j} 。任何角度下,分量 $\cos\theta$ 与 $\sin\theta$ 会得到 $\boldsymbol{u} \cdot \boldsymbol{u} = 1$,这是因为 $\cos^2\theta + \sin^2\theta = 1$ 。

这些向量往外伸展得到图 1.7 的单位圆,单位圆上角度为 θ 的点坐标是 $\cos\theta$ 与 $\sin\theta$ 。由于(2, 2, 1)的长度是 3,向量(2/3, 2/3, 1/3)长度是 1,检验得到 $\mathbf{u} \cdot \mathbf{u} = 4/9 + 4/9 + 1/9 = 1$ 。任何非零向量 \mathbf{v} 除以本身的长度|| \mathbf{v} ||就是单位向量。

单位向量 u=v/||v|| 是在v方向的单位向量。

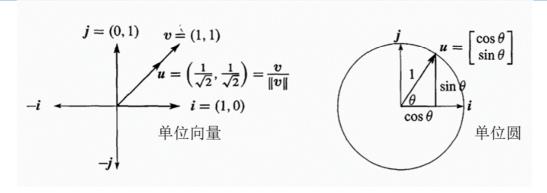


图 1.7: 坐标向量 i 与 j。位于 45°(左图)的单位向量 u 是 v = (1, 1)除以本身长度 ||v|| = $\sqrt{2}$ 。单位向量 $u = (\cos\theta, \sin\theta)$ 的角度是 θ 。

两个向量之间的夹角

我们说垂直向量有 $\mathbf{v} \cdot \mathbf{w} = 0$,当角度是 90°时点积为 0。为了说明,我们将角度与点积进行关联,展示如何利用 $\mathbf{v} \cdot \mathbf{w}$ 求出两个非零向量 $\mathbf{v} = \mathbf{w}$ 的夹角。

直角 当v与w垂直,点积 $v \cdot w = 0$ 。

证明 当 v 与 w 垂直,他们形成直角的两个边,第三边为 v - w (斜边如图 1.8)。 毕氏定理说明直角三角形的边有 $a^2 + b^2 = c^2$:

垂直向量
$$\|v\|^2 + \|w\|^2 = \|v - w\|^2$$
 (2)

以二维的方式写出上述长度的公式,方程式是:

毕氏定理
$$(v_1^2 + v_2^2) + (w_1^2 + w_2^2) = (v_1 - w_1)^2 + (v_2 - w_2)^2$$
 (3) 右侧从 $v_1^2 - 2v_1w_1 + w_1^2$ 开始,两侧都有 v_1^2 与 w_1^2 可以对消,剩下 – $2v_1w_1$ 。同理 v_2^2 与 w_2^2 可以对消,剩下 – $2v_2w_2$ 。(如果是三维向量,还会有 – $2v_3w_3$)。现在两边 同除 – 2 得到 $\mathbf{v} \cdot \mathbf{w} = 0$ 。 【原文写成 $\mathbf{v} - \mathbf{w} = 0$ 是错误】

$$0 = -2v_1w_1 - 2v_2w_2 \ \text{@all} \ v_1w_1 + v_2w_2 = 0 \tag{4}$$

结论 直角產生 $\mathbf{v} \cdot \mathbf{w} = 0$ 。当角度 $\theta = 90^\circ$,点积为 0,此时 $\cos \theta = 0$ 。因为 $\mathbf{0} \cdot \mathbf{w}$ 永远为 0,所以零向量 $\mathbf{0}$ 与所有向量 \mathbf{w} 垂直。

现在假设 $v \cdot w$ 不是零,可以为正也可以为负, $v \cdot w$ 的正负号可以立即知道是小于还是大于直角。当 $v \cdot w$ 为正,角度小于 90°;当 $v \cdot w$ 为负,角度大于 90°。图 1.8 的右侧展示典型向量v = (3,1),它与w = (1,3)的夹角小于 90°,这是因为 $v \cdot w = 6$ 正数。

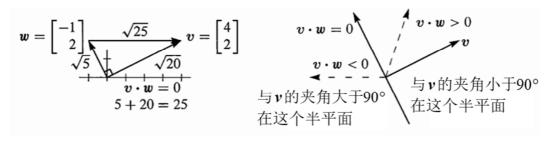


图 1.8: 垂直向量有 $\mathbf{v} \cdot \mathbf{w} = 0$, 则 $\|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 = \|\mathbf{v} - \mathbf{w}\|^2$

边界线是向量与v垂直的位置,(1,-3)位于正负之间的分界线,所以(1,-3)与(3,1)垂直,点积为零。

点积可以算出真正的角度 θ 。对于两个单位向量 u 与 U 来说, $u \cdot U$ 的符号可以决定 $\theta < 90^\circ$ 或是 $\theta > 90^\circ$ 。除此之外,点积 $u \cdot U$ 的值就是 $\cos \theta$ 。对于 n 维空间而言,前面的观念也是正确的。

两个单位向量 u = U 的夹角为 θ , 则 $u \cdot U = \cos \theta$, 当然 $|u \cdot U| \le 1$ 。

记得 $\cos\theta$ 不会大于 1, 也不会小于–1, 单位向量之间的点积会落在–1 与 1 之间, $u \cdot U$ 的值就是 $\cos\theta$ 。

图 1.9 清楚显示 $\mathbf{u} = (\cos \theta, \sin \theta)$ 与 $\mathbf{i} = (1, 0)$,点积 $\mathbf{u} \cdot \mathbf{i} = \cos \theta$,这是两个向量夹角的余弦。

旋转任何角度 α 之后,他们仍然是单位向量。向量 i = (1, 0)旋转至 $(\cos \alpha, \sin \alpha)$,向量 u 旋转至 $(\cos \beta, \sin \beta)$,其中 $\beta = \alpha + \theta$ 。他们的点积是 $\cos \alpha \cos \beta + \sin \alpha \sin \beta$,由三角定理得到 $\cos(\beta - \alpha) = \cos \theta$ 。

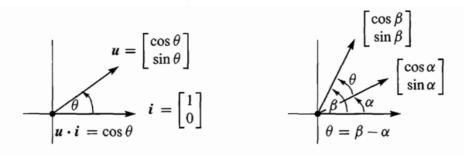


图 1.19: 单位向量: $\mathbf{u} \cdot \mathbf{U}$ 等于 θ (夹角)的余弦

请尊重版权与译者的劳动成果,侵权必究!

如果v与w不是单位向量会怎么样?除以个别的长度得到u=v/||v||,U=w/||w||,则单位向量的点积得到 $\cos\theta$ 。

余弦公式 若
$$v$$
与 w 是非零向量,则 $\frac{v \cdot w}{\|v\| \|w\|} = \cos \theta$ (5)

无论什么角度,u = v/||v||与 U = w/||w|| 的点积不会超过 1,这就是"**苏瓦兹不等式**": $|v \cdot w| \le ||v|| \, ||w||$ ——更准确的说法是柯西-苏瓦兹-布尼亚克斯基不等式,分别在法国、德国、俄罗斯发表(也许有其他地方,这是数学上最重要的不等式)。由于 $|\cos \theta|$ 不会超过 1,余弦公式得到两个伟大的不等式:

苏瓦兹不等式 三角不等式

$$|v \cdot w| \le ||v|| ||w||$$

$$||v + w|| \le ||v|| + ||w||$$

范例 5 对于 $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ 与 $\mathbf{w} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 求 $\cos \theta$,并且验证两个不等式。

解 点积 $\mathbf{v} \cdot \mathbf{w} = 4$, 两者的长度都是 $\sqrt{5}$,余弦是 4/5。

$$\cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|} = \frac{4}{\sqrt{5} \sqrt{5}} = \frac{4}{5}$$

苏瓦兹不等式得到 $\mathbf{v} \cdot \mathbf{w} = 4$ 小于 $\|\mathbf{v}\| \|\mathbf{w}\| = 5$ 。使用三角不等式,第三边长是 $\|\mathbf{v} + \mathbf{w}\|$ 会小于第一边长加第二边长。针对 $\mathbf{v} + \mathbf{w} = (3,3)$,三个边长是 $\sqrt{18} < \sqrt{5} + \sqrt{5}$,两 边平方得到 18 < 20。

范例 6 v = (a, b)与 w = (b, a)的点积是 2ab,两者的长度都是 $\sqrt{a^2 + b^2}$,苏瓦兹不等式 $v \cdot w \le ||v|| \, ||w||$ 得到 $2ab \le a^2 + b^2$ 。

如果写成 $x=a^2$ 与 $y=b^2$,会得到更著名的结果。"几何平均值" \sqrt{xy} 不大于"算术(arithmetic)平均值" = (x+y)/2。

几何平均值
$$\leq$$
 算术平均值 $ab \leq \frac{a^2 + b^2}{2}$ 变成 $\sqrt{xy} \leq \frac{x + y}{2}$

范例 5 的 a=2 与 b=1,所以 x=4 与 y=1,几何平均值 $\sqrt{xy}=2$ 小于算术平均值 (1+4)/2=2.5。

计算上的注解

MATLAB, Python, Julia 可以直接进行整个向量的计算,不用透过向量的分量。当v, w 定义完成后就可以直接得到v+w。以行的方式输入v, w, 利用符号 prime '可以转置成列向量。2v+3w 写成 2*v+3*w。除非结尾输入半分号符号";",否则结果会马上显示出来。

MATLAB $v = [2 \ 3 \ 4]$ '; $w = [1 \ 1 \ 1]$ '; u = 2*v + 3*w 点积 $v \cdot w$ 是行向量乘列向量(使用*而不是 \cdot)。

点积通常写成
$$\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
 或 $v'*w$ 而不是 $\begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ 。

在 MATLAB 中,v 的长度写成 norm(v),也就是 sqrt(v'*v),然后利用点积 v'*w 求出余弦,再求出对应此余弦的角(单位是径度 radian)。

余弦公式 cosine = v' * w / (norm(v) * norm(w))

反余弦 angle = acos(cosine)

M-档案可以建立新的函数 cosine(v, w)。Python 与 Julia 都是开放源(open source)。

主要观念的复习

- 1. 点积 $\mathbf{v} \cdot \mathbf{w}$ 的计算: 所有的 $\mathbf{v}_i \mathbf{w}_i$ 先乘好再全部相加。
- 2. 长度 $\|v\|$ 是 $v \cdot v$ 的平方根, $u = v / \|v\|$ 是单位向量,长度等于 1。
- 3. 当v与w垂直,点积 $v \cdot w = 0$ 。
- 4. θ (任意两个非零向量v与w的夹角)的余弦不超过 1:

余弦 $\cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|}$, 苏瓦兹不等式 $|\mathbf{v} \cdot \mathbf{w}| \le \|\mathbf{v}\| \|\mathbf{w}\|$

已解范例

1.2A 向量 $\mathbf{v} = (3, 4)$ 与 $\mathbf{w} = (4, 3)$,针对 $\mathbf{v} \cdot \mathbf{w}$ 验证苏瓦兹不等式,以及针对 $\|\mathbf{v} + \mathbf{w}\|$ 验证三角不等式。求出 \mathbf{v} 与 \mathbf{w} 之间角度的 $\cos \theta$ 。什么样的 \mathbf{v} 与 \mathbf{w} 得到等式 $|\mathbf{v} \cdot \mathbf{w}|$ = $\|\mathbf{v}\| \|\mathbf{w}\|$ 与 $\|\mathbf{v} + \mathbf{w}\| = \|\mathbf{v}\| + \|\mathbf{w}\|$?

解 点积是 $\mathbf{v} \cdot \mathbf{w} = (3)(4) + (4)(3) = 24$, \mathbf{v} 的长度 $\|\mathbf{v}\| = \sqrt{9 + 16} = 5$, $\|\mathbf{w}\|$ 也是 5。总和 $\mathbf{v} + \mathbf{w} = (7, 7)$ 的长度是 $7\sqrt{2} < 10$ 。

苏瓦兹不等式 $|v \cdot w| \le ||v|| ||w||$ 得到 24 < 25

三角不等式 $||v + w|| \le ||v|| + ||w||$ 得到 $7\sqrt{2} < 5 + 5$

角度的余弦 $\cos \theta = 24/25$, 这是 v = (3, 4)到 w = (4, 3)的夹角

等式: 一个向量是另一个向量的倍数,如同 w = cv,角度是 0°或是 180°。在此情形下, $|\cos \theta| = 1$ 且 $|v \cdot w| = ||v|| \, ||w||$ 。如果角度是 0°,比如说 w = 2v,则||v + w|| = ||v|| + ||w||(两侧都是 3||v||),三边是 v, 2v, 3v 的三角形是扁平的。

1.2B 求出在 v = (3, 4)方向的单位向量 u。求出垂直于 u 的单位向量 U, U 有多少种可能性?

解 将 v 除以本身的长度||v|| = 5 得到单位向量 u,选择垂直向量 V = (-4, 3),这是因为(3)(-4) + (4)(3) = 0。将 V 除以长度||V|| 得到与 u 垂直的单位向量:

$$u = \frac{v}{\|v\|} = \left(\frac{3}{5}, \frac{4}{5}\right)$$
 $U = \frac{V}{\|V\|} = \left(\frac{-4}{5}, \frac{3}{5}\right)$ $u \cdot U = 0$

另外还有一个垂直单位向量是 -U = (4/5, -3/5)。

1.2C 给定两个向量 $\mathbf{r} = (2, -1)$ 与 $\mathbf{s} = (-1, 2)$,求出向量 $\mathbf{x} = (c, d)$ 使得内积 $\mathbf{x} \cdot \mathbf{r} = 1$ 以及 $\mathbf{x} \cdot \mathbf{s} = 0$,

解 两个点积得到 c = d 的线性方程式,现在 x = (c, d)

$$x \cdot r = 1$$
 则 $2c - d = 1$ 已解范例 1.1C $x \cdot s = 0$ 则 $-c + 2d = 0$ 的相同方程式

关于 n 维空间的 $\mathbf{x} = (x_1, x_2, ..., x_n)$ 的 n 个方程式的注解

段落 1.1 从列 v_j 开始,目标是建立 $x_1v_1 + x_2v_2 + ... + x_nv_n = b$ 。本段落从行 r_i 开始,现在的目标是找到 x 使得 $x \cdot r_i = b_i$ 。

很快的 v's 就是矩阵 A 的列, r's 就是 A 的行, (唯一的)问题就是求解 Ax = b。

问题集 1.2

1 计算点积 $\mathbf{u} \cdot \mathbf{v}$, $\mathbf{u} \cdot \mathbf{w}$, $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w})$ 以及 $\mathbf{w} \cdot \mathbf{v}$:

$$\boldsymbol{u} = \begin{bmatrix} -.6 \\ .8 \end{bmatrix} \quad \boldsymbol{v} = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \quad \boldsymbol{w} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

- 2 计算问题 1 的向量长度||u||与||v||与||w||,验证苏瓦兹不等式 | $u \cdot v$ | ≤ ||u|| ||v||以及 | $v \cdot w$ | ≤ ||v|| ||w||。
- 3 求出问题 $1 \times v = w$ 方向的单位向量,求出夹角的余弦。选择向量 a, b, c 使得这些向量与 w 的夹角分别是 0° , 90° , 180° 。
- 4 对于任意单位向量 v 与 w, 求出点积 (实际数字)

(a)
$$v = -v$$
 (b) $v + w = v - w$ (c) $v - 2w = v + 2w$

5 分别求出在向量 v = (1, 3)与 w = (2, 1, 2)方向的单位向量 u_1 与 u_2 。再分别求出 垂直 u_1 与 u_2 的单位向量 U_1 与 U_2 。

- 6 (a) 描述与向量 $\mathbf{v} = (2, -1)$ 垂直的每个向量 $\mathbf{w} = (w_1, w_2)$ 。
 - (b) 所有与向量 V = (1, 1, 1)垂直的向量落在三维空间的一个____。
 - (c) 同时与向量(1, 1, 1)与(1, 2, 3)垂直的向量落在一个____。
- 7 求出两个向量之间夹角 θ (来自它的余弦)

(a)
$$\mathbf{v} = \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}$$
 $\mathbf{w} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ (b) $\mathbf{v} = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$ $\mathbf{w} = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$

(c)
$$\mathbf{v} = \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}$$
 $\mathbf{w} = \begin{bmatrix} -1 \\ \sqrt{3} \end{bmatrix}$ (d) $\mathbf{v} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ $\mathbf{w} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$

- 8 是非题(如果正确,举出理由;如果错误,举出反例):
 - (a) 如果 u = (1, 1, 1)垂直 v 也垂直 w,则 v 平行 w。
 - (b) 如果 u 垂直 v 也垂直 w,则 u 垂直 v+2w。
 - (c) 如果 \mathbf{u} 与 \mathbf{v} 是互相垂直的单位向量,则 $\|\mathbf{u} \mathbf{v}\| = \sqrt{2}$? Yes!
- 9 从(0, 0)出发到(v_1 , v_2)与(w_1 , w_2)的斜率分别是 v_2/v_1 与 w_2/w_1 ,假设斜率的乘积 v_2w_2/v_1w_1 是-1,证明 $\mathbf{v}\cdot\mathbf{w}=0$ 且两个向量垂直。(直线 y=4x 与直线 y=-x/4 垂直。)
- 10 分别画出从(0,0)出发到点v = (1,2)与点w = (-2,1)的箭头,求出两个斜率的乘积。答案会是 $v \cdot w = 0$ 的信号,而且两个箭头
- 11 若 $v \cdot w$ 为负数,两者的夹角可以得到什么结论?画出一个三维向量v(箭头),然后说明如何找到所有的w's 使得 $v \cdot w < 0$ 。
- 12 若 v = (1, 1)与 w = (1, 5),求出 c 使得 w cv 垂直于 v。若 v 与 w 是任意的非零向量,找出 c 的公式。
- 13 互相垂直的非零向量v与w都与(1, 0, 1)垂直, 求出v与w。
- 14 彼此垂直的非零向量 u, v = w,他们都与(1, 1, 1, 1)垂直,求出 u, v = w。
- 15 x = 2 与 y = 8 的几何平均值是 $\sqrt{xy} = 4$,算术平均值会稍大: $(x + y)/2 = _____$ 。 这是来自范例 6 中有关 $v = (\sqrt{2}, \sqrt{8})$ 与 $w = (\sqrt{8}, \sqrt{2})$ 的苏瓦兹不等式,求 v 与 w 的 $\cos\theta$ 。
- 16 9 维空间中的向量 v = (1, 1, ..., 1)的长度为何? 求 v 方向的单位向量 u,再求 一个单位向量 w 垂直 v。
- 17 向量(1, 0, -1)与坐标轴单位向量 i, j, k 的夹角分别是 α , β , θ , 求出三个角的余弦值。验证公式 $\cos^2\alpha + \cos^2\beta + \cos^2\theta = 1$ 。

问题 18-28 有关长度以及三角形的角的重要事实。

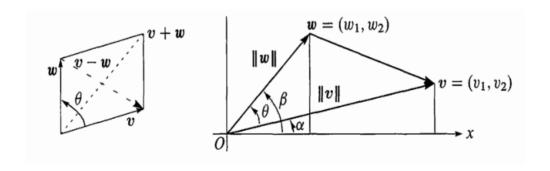
- 18 $\mathbf{v} = (4, 2)$ 与 $\mathbf{w} = (-1, 2)$ 组成的平行四边形是个矩形,验证毕氏定理 $a^2 + b^2 = c^2$ 只有在直角三角形成立: $(\mathbf{v}$ 的长度)² + $(\mathbf{w}$ 的长度)² = $(\mathbf{v} + \mathbf{w}$ 的长度)²
- 19 (点积的规则) 下列方程式简单又好用:

(1)
$$\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$$
 (2) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ (3) $(c\mathbf{v}) \cdot \mathbf{w} = c(\mathbf{v} \cdot \mathbf{w})$ 利用(2), 当 $\mathbf{u} = \mathbf{v} + \mathbf{w}$, 证明 $\|\mathbf{v} + \mathbf{w}\|^2 = \mathbf{v} \cdot \mathbf{v} + 2\mathbf{v} \cdot \mathbf{w} + \mathbf{w} \cdot \mathbf{w}$

20 余弦法则来自: $(v-w) \cdot (v-w) = v \cdot v - 2v \cdot w + w \cdot w$: **余弦法则** $||v-w||^2 = ||v||^2 - 2||v|| ||w|| \cos \theta + ||w||^2$ 画出三边为 v, w, v-w 的三角形,哪一个角是 θ ?

21 三角不等式说明: $(v + w \text{ 的长度}) \le (v \text{ 的长度}) + (w \text{ 的长度})$,问题 19 指出 $||v + w||^2 = ||v||^2 + 2v \cdot w + ||w||^2$,将 $v \cdot w$ 变大成为||v|| ||w||,证明 ||边 3|| 不能超过 ||边 1|| + ||边 2||。

三角不等式 $\|\mathbf{v} + \mathbf{w}\|^2 \le (\|\mathbf{v}\| + \|\mathbf{w}\|)^2$ 或者 $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$



- 22 苏瓦兹不等式 $|v \cdot w| \le ||v|| ||w||$, 从代数的角度(不从三角学)来看:
 - (a) 两侧同乘本身得到 $(v_1w_1 + v_2w_2)^2 \le (v_1^2 + v_2^2)(w_1^2 + w_2^2)$ 。
 - (b) 证明上式左右两侧的差(difference)为 $(v_1w_2 v_2w_1)^2$ 。 因为平方不能为负——所以不等式成立。
- 23 图形显示 $\cos \alpha = v_1/\|\mathbf{v}\|$, $\sin \alpha = v_2/\|\mathbf{v}\|$, 同理 $\cos \beta =$ ______, $\sin \beta =$ ______。 角度 $\theta = \beta \alpha$,代入三角公式 $\cos \beta \cos \alpha + \sin \beta \sin \alpha = \cos(\beta \alpha)$,可以得到 $\cos \theta = \mathbf{v} \cdot \mathbf{w} / \|\mathbf{v}\| \|\mathbf{w}\|$ 。

24 对于单位向量 (u_1, u_2) 与 (U_1, U_2) , 利用一个式子证明 $|\mathbf{u} \cdot \mathbf{U}| \le 1$:

$$|\mathbf{u} \cdot \mathbf{v}| \le |u_1||U_1| + |u_2||U_2| \le \frac{{u_1}^2 + {U_1}^2}{2} + \frac{{u_2}^2 + {U_2}^2}{2} = 1$$

将 $(u_1, u_2) = (0.6, 0.8)$, $(U_1, U_2) = (0.8, 0.6)$ 放在整条直线上,求 $\cos \theta$ 。

- 25 为什么一开始就说 $\cos\theta$ |不会大于 1?
- 26 (推荐) 画出一个平行四边形。
- 27 平行四边形的两个边是 \mathbf{v} 与 \mathbf{w} ,证明两条对角线的平方和会等于四个边的平方和: $\|\mathbf{v} + \mathbf{w}\|^2 + \|\mathbf{v} \mathbf{w}\|^2 = 2\|\mathbf{v}\|^2 + 2\|\mathbf{w}\|^2$ 。
- 28 若 v = (1, 2),在 xy 平面画出使得 $v \cdot w = x + 2y = 5$ 的所有向量 w = (x, y),为什么答案会是一条直线? 最短的 w 为何?
- 29 (推荐) 若 $\|v\| = 5$, $\|w\| = 3$, $\|w\| = 4$,

挑战问题

- 30 在 xy 平面会不会存在三个向量,使得 $u \cdot v < 0$, $v \cdot w < 0$, $u \cdot w < 0$? 我不知道在 xyz 平面有多少这样的向量,使得所有的点积是负数。(在平面绝对不存在 4 个向量有这样的性质。)
- 31 任意选取数值使得 x + y + z = 0,求出向量 $\mathbf{v} = (x, y, z)$ 与 $\mathbf{w} = (z, x, y)$ 的夹角。 挑战问题: 说明为什么 $\mathbf{v} \cdot \mathbf{w} / \|\mathbf{v}\| \|\mathbf{w}\|$ 永远是-1/2。
- 32 你如何证明 $\sqrt[3]{xyz} \le \frac{x+y+z}{3}$ (几何平均值 \le 算术平均值)?
- 33 从向量 $\left(\pm\frac{1}{2},\pm\frac{1}{2},\pm\frac{1}{2},\pm\frac{1}{2}\right)$ 中,利用正负号选取 4 个互相垂直的单位向量。
- 34 利用 MATLAB 的 v = randn(3, 1)指令,制造一个随机的单位向量 u = v/||v||; 利用 V = randn(3, 30)指令,制造 30 个以上的单位向量 U_j 。点积 $|u \cdot U_j|$ 的平均大小是多少?在微积分中,平均值是 $\int_0^{\pi} |\cos\theta| d\theta / \pi = \frac{2}{\pi}$ 。

1.3 矩阵

1
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
 是 3×2 矩阵: $m = 3$ 行与 $n = 2$ 列。

$$2 Ax = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
是列的组合,
$$Ax = x_1 \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}.$$

3 Ax 的 3 个分量是 A 的 3 个行与向量 x 的点积:

每次处理一行
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 7 \\ 8 \end{bmatrix} = \begin{bmatrix} 1 \cdot 7 + 2 \cdot 8 \\ 3 \cdot 7 + 4 \cdot 8 \\ 5 \cdot 7 + 6 \cdot 8 \end{bmatrix} = \begin{bmatrix} 23 \\ 53 \\ 83 \end{bmatrix}$$

- 4 矩阵形式的方程式 $A\mathbf{x} = \mathbf{b}$: 使用 $\begin{bmatrix} 2 & 5 \\ 3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ 取代 $\begin{bmatrix} 2x_1 + 5x_2 = b_1 \\ 3x_1 + 7x_2 = b_2 \end{bmatrix}$ 。
- 5 Ax = b 的解可以写成 $x = A^{-1}b$,但是有些矩阵不允许 A^{-1} 。

本段落从三个向量u, v, w开始,我会使用矩阵来结合他们。

三个向量
$$u = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \quad v = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \quad w = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

在三维空间他们的线性组合是 $x_1u + x_2v + x_3w$:

重要事项:利用矩阵改写组合,u,v,w变成矩阵A的列,矩阵乘向量 (x_1,x_2,x_3) :

矩阵乘向量,列的组合
$$Ax = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 - x_1 \\ x_3 - x_2 \end{bmatrix}$$
 (2)

数值 x_1, x_2, x_3 是向量 x 的分量,矩阵 A 乘向量 x 等同于方程式(1)的三个列的组合 $x_1 u + x_2 v + x_3 w$ 。

这不只是 Ax 的定义,因为改写带来了重要的不同观点,刚开始是三个数字 x_1 , x_2 , x_3 是乘向量,现在是矩阵乘这些数字。

矩阵 A 作用在向量 x, 输出 Ax 是 A 的列的组合 b。

为了观察作用, 我把 b_1 , b_2 , b_3 写成 Ax 的分量:

$$A\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 - x_1 \\ x_3 - x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \mathbf{b}$$
 (3)

输入是 x,输出是 b = Ax。这个 A 是一个差分矩阵(difference matrix),因为 b 包含输入 x 的差,最上方的差是 $x_1 - x_0 = x_1 - 0$ 。

这里是一个展示 x = (1, 4, 9)的差的范例: 平方数在 x 中,奇数在 b 中。

$$\boldsymbol{x} = \begin{bmatrix} 1\\4\\9 \end{bmatrix} =$$
平方数
$$A\boldsymbol{x} = \begin{bmatrix} 1-0\\4-1\\9-4 \end{bmatrix} = \begin{bmatrix} 1\\3\\5 \end{bmatrix} = \boldsymbol{b}$$
 (4)

这个模式可以延伸到 4×4 矩阵,下一个平方数是 16,下一个差是 $x_4-x_3=16-9=7$ (下个奇数)。这个矩阵同时将所有的差 1,3,5,7 全部计算出来。

重要注解: 每次乘一个行。你已经研读矩阵与向量的乘法 Ax,也许可以换一种方式来解释,我们使用行而不使用列。一般情形是计算每一行与x 的点积:

$$A\mathbf{x}$$
同样也是
行的点积
$$A\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} (1, 0, 0) \cdot (x_1, x_2, x_3) \\ (-1, 1, 0) \cdot (x_1, x_2, x_3) \\ (0, -1, 1) \cdot (x_1, x_2, x_3) \end{bmatrix}$$
 (5)

这些点积与方程式(3)的结果 $x_1, x_2 - x_1, x_3 - x_2$ 完全相同。新的方法是每次处理 Ax 的一个列,线性组合是线性代数的关键,输出 Ax 是 A 的列的线性组合。

如果是数字,你可以用行来乘 *Ax*;如果是文字,用列处理比较好。第二章会再重复这些矩阵乘法的规则,并且解释这些概念。

线性方程式

观念的改变至关重要。目前为止数字 x_1 , x_2 , x_3 是已知,右侧的 b 未知,我们利用 A 乘 x 得到差的向量。**现在我们考虑 b 已知,要求解** x 。

老问题: 计算线性组合 $x_1 \mathbf{u} + x_2 \mathbf{v} + x_3 \mathbf{w}$ 求出 \mathbf{b} 。

新问题:什么样的 u, v, w 的线性组合产生特定的 b?

这是一个逆反问题——找出输入 x 得到想要的输出 b = Ax。你已经见过这个,这是 x_1, x_2, x_3 的线性方程式系统。方程式右侧是 b_1, b_2, b_3 ,我现在要求解 Ax = b 找出 x_1, x_2, x_3 :

我现在立刻承认——大部分的线性系统都不容易求解。这个范例中,第一个方程式决定 $x_1 = b_1$,第二个方程式产生 $x_2 = b_1 + b_2$ 。因为 A 是三角矩阵,这些方程式可以有序的求出解答(顶端至底部)。

检视两个特殊案例,右侧的 b_1,b_2,b_3 设成0,0,0与1,3,5:

$$\boldsymbol{b} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
得到 $\boldsymbol{x} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $\boldsymbol{b} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$ 得到 $\boldsymbol{x} = \begin{bmatrix} 1 \\ 1+3 \\ 1+3+5 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 9 \end{bmatrix}$

第一个解(全部是 0)比看起来更重要。口头说法:如果输出 b=0,输入必须 x=0。对 A 来说,理论是成立的,但是对所有的矩阵而言却是不一定。第二个例子会说明(不同的矩阵 C),当 $C \neq 0$ 且 $x \neq 0$ 时,如何才能得到 Cx=0。

这个矩阵 A 是可逆,从 b 可以反推得到 x,写成 $x = A^{-1}b$ 。

逆矩阵

让我重复一次方程式(6)的解 x, 会出现一个总和矩阵!

求解
$$A\mathbf{x} = \mathbf{b}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_1 + b_2 \\ b_1 + b_2 + b_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
 (7)

如果 x 之间的差是 b,那么 b 之间的和就是 x。对于奇数 b = (1,3,5)与平方数 x = (1,4,9)来说,这是正确的,对于所有的向量都是正确的。方程式(7)的**总和矩阵就是差分矩阵** A 的逆矩阵 A^{-1} 。

范例: x = (1, 2, 3)的差是 b = (1, 1, 1),所以 b = Ax 且 $x = A^{-1}b$:

$$A\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad A^{-1}\mathbf{b} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$

方程式(7)的解 $x = (x_1, x_2, x_3)$ 告诉我们两件重要的事实:

1. 对每一个 **b**,存在一个 Ax = b 的解。 **2**. 矩阵 A^{-1} 得到 $x = A^{-1}b$ 。下一章会询问其他方程式 Ax = b 有没有解?如何求解?

微积分的注解:将这些特殊矩阵与微积分产生关联,向量x变成函数x(t),差Ax变成导数dx/dt = b(t)。反向来说,总和 $A^{-1}b$ 变成b(t)的积分。**差的和就如同导数的积分**。

微积分的基础定理告诉我们:积分是微分的逆反。

$$A\mathbf{x} = \mathbf{b} \perp \mathbf{x} = A^{-1}\mathbf{b} \qquad \frac{d\mathbf{x}}{dt} = b + \mathbf{x}(t) = \int_0^t b \, dt \qquad (8)$$

平方数 0, 1, 4, 9 的差是 $1, 3, 5, x(t) = t^2$ 的微分是 2t。当 t = 1, 2, 3 时得到偶数 b = 2, 4, 6,这会是一个完美的类比。但是差分与微分不同,我们的矩阵 A 得到的不是 2t,而是 2t - 1:

反向
$$x(t) - x(t-1) = t^2 - (t-1)^2 = t^2 - (t^2 - 2t + 1) = 2t - 1$$
 (9)

问题集会继续说明前向差分(forward difference)得到 2t+1。最好的选择(在微积分课程中不常见)是中心差分(centered difference),形式是 x(t+1)-x(t-1)。将 Δx 除以距离 Δt ,其中 Δt 是由 t-1 到 t+1,所以 $\Delta t=2$:

$$x(t) = t^2$$
的中心差分
$$\frac{(t+1)^2 - (t-1)^2}{2} = 2t \quad (恰好)$$
 (10)

差分矩阵很伟大,中心差分是最佳,我们的第二个范例是不可逆。

循环差分(cyclic difference)

这个范例保持同样的 u 与 v, 只是把 w 换成 w*:

第二个范例
$$u = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \quad v = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \quad w^* = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

现在 u, v, w^* 的线性组合得到循环差分矩阵 C:

循环
$$C\mathbf{x} = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 - x_3 \\ x_2 - x_1 \\ x_3 - x_2 \end{bmatrix} = \mathbf{b}$$
 (11)

矩阵 C 不是三角形,给定 b 时不是那么简单求解 x。事实上是不可能求得 Cx = b 的解,因为这三个方程式不是得到无限多解(偶尔),就是无解(经常):

$$C\mathbf{x} = \mathbf{0}$$
 有**无限多** \mathbf{x}
$$\begin{bmatrix} x_1 - x_3 \\ x_2 - x_1 \\ x_3 - x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 的解是所有的向量
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} c \\ c \\ c \end{bmatrix}$$
 (12)

每一个常数向量,例如 x = (3, 3, 3)在循环时的差都是 0。未定常数 c 就如同求取积分时的+ C。循环差分使得第一分量变成 $x_1 - x_3$,而不是从 $x_0 = 0$ 开始。

Cx = b 更大的可能性是 x 完全无解:

从几何的观点来看,不存在 u, v, w^* 的线性组合可以得到向量 b = (1, 3, 5),这样的线性组合无法形成全部的三维空间。右侧必须有 $b_1 + b_2 + b_3 = 0$,才能允许 Cx = b有一个解,这是因为左侧的 $x_1 - x_3, x_2 - x_1, x_3 - x_2$ 相加必定为 0。换言之:

所有的线性组合 $x_1u + x_2v + x_3w*$ 落在 $b_1 + b_2 + b_3 = 0$ 给定的平面。

这个主题突然把代数与几何结合在一起,线性组合可以形成整个空间,也可以只形成一个平面。我们需要一个图形来展示 u, v, w(第一个例子)与 u, v, w*(在同一个平面)之间的重要差别:

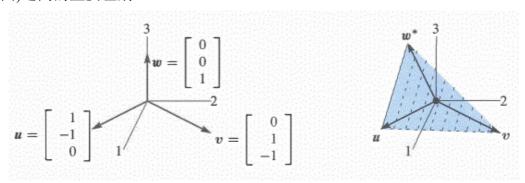


图 1.10: 无关向量 u, v, w; 落在同一平面的相关向量 u, v, w^* 。

无关与相关

图 1.10 中第一个展示矩阵 A 的列向量,后面展示 C 的列向量。前两个列 u 与 v 在两个图形中完全相同,如果我们只检视这两个向量的组合,我们得到一个二维 平面,**关键问题在于第三个向量是否在这个平面上**。

无关(independence) w 不在 u 与 v 的平面上。 相关(dependence) w*在 u 与 v 的平面上。

重点是新向量 w*是 u 与 v 的线性组合:

$$\mathbf{u} + \mathbf{v} + \mathbf{w}^* = \mathbf{0} \qquad \mathbf{w}^* = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = -\mathbf{u} - \mathbf{v}$$
 (14)

这三个向量 u, v, w^* 的分量总和都是零,所有的线性组合会有 $b_1 + b_2 + b_3 = 0$ (如同我们前面说的,把三个方程式相加),这就是 u 与 v 的线性组合形成平面的方程式。现在引进 w^* ,因为 w^* 已经在这个平面上,我们没有得到新的向量。

原始 w = (0, 0, 1)不在平面上: $0 + 0 + 1 \neq 0$, u, v, w 的线性组合形成整个三维空间。我们知道,因为方程式(6)的解 $x = A^{-1}b$ 给出正确的组合产生任意 b。

前面两个矩阵 A 与 C,对应的第三个向量分别是 w 与 w^* ,允许我提出两个线性代数的关键字: 无关与相关。本课程的前半段会更深入探讨这些观念——如果你在前面两个例子中已经学会,我会很快乐的:

u, v, w 无关,除了 0u + 0v + 0w = 0 之外,没有其他线性组合得到 b = 0。

u, v, w*相关,存在诸如 u + v + w*的其他组合得到 b = 0。

你可以在三维空间作图,三个向量落在一个平面,或者不在同一个平面。第二章讨论 n 维空间中的 n 个向量,无关或相关是关键点,这些向量进入一个 $n \times n$ 矩阵的列:

无关列: Ax = 0 有一个解, A 是可逆矩阵。

相关列: Cx = 0 有很多解, A 是奇异矩阵。

最终我们会讨论 m 维空间中的 n 个向量,有 n 个列的矩阵 A 现在是矩形($m \times n$)。 了解 Ax = b 是第三章的问题。

主要观念的复习

- 1. 矩阵乘向量: Ax = A 的列的组合。
- 2. 当 A 是可逆矩阵, Ax = b 的解是 $x = A^{-1}b$.
- 3. 循环矩阵 C 没有逆矩阵,它的三个列落在同一平面,这些相关的列相加得到零向量,Cx = 0 有很多解。
- 4. 本段落是关键概念的超前理解,还没有完全说明。

已解范例

1.3A 把 *A* 的西南角单元 a_{31} (行 3,列 1)改成 a_{31} = **1**: 【entry 翻译成单元,有别于元素 element】

$$A\mathbf{x} = \mathbf{b} \qquad \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ \mathbf{1} & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ -x_1 + x_2 \\ \mathbf{x}_1 - x_2 + x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

对任意 \boldsymbol{b} 求解 \boldsymbol{x} 。从 $\boldsymbol{x} = \boldsymbol{A}^{-1}\boldsymbol{b}$ 看出逆矩阵 \boldsymbol{A}^{-1} 。

解 由上而下求解(线性三角形)系统 Ax = b:

首先
$$x_1 = b_1$$

然后 $x_2 = b_1 + b_2$ 意思是 $\mathbf{x} = A^{-1}\mathbf{b} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$

这是很好的练习,可以看到逆矩阵的列乘 b_1, b_2, b_3 。 A^{-1} 的第一列是对应 $\boldsymbol{b} = (1, 0, 0)$ 的解,第二列是对应 $\boldsymbol{b} = (0, 1, 0)$ 的解, A^{-1} 的第三列 \boldsymbol{x} 是对应 $A\boldsymbol{x} = \boldsymbol{b} = (0, 0, 1)$ 的解。

矩阵 A 的三个列仍然无关,他们不在同一个平面,这三个列的线性组合,使用正确的加权 x_1, x_2, x_3 ,可以产生任意的三维向量 $\boldsymbol{b} = (b_1, b_2, b_3)$,这些加权来自 $\boldsymbol{x} = A^{-1}\boldsymbol{b}$ 。

1.3B E 是一个消元(elimination)矩阵,E 有一个减法, E^{-1} 有一个加法。

$$\boldsymbol{b} = E\boldsymbol{x} \qquad \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 - lx_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -l & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad E = \begin{bmatrix} 1 & 0 \\ -l & 1 \end{bmatrix}$$

$$\mathbf{x} = E^{-1}\mathbf{b}$$
 $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ lb_1 + b_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ l & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ $E^{-1} = \begin{bmatrix} 1 & 0 \\ l & 1 \end{bmatrix}$

1.3C 把 C 从循环差分变成中心差分产生 $x_3 - x_1$:

$$C\mathbf{x} = \mathbf{b} \qquad \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_2 - 0 \\ x_3 - x_1 \\ 0 - x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
(15)

Cx = b 只有在 $b_1 + b_3 = x_2 - x_2 = 0$ 才有解,这是三维空间中向量 b 的一个平面。C 的每一列都在这个平面上,这个矩阵没有逆矩阵,所以平面包含了这些列的全部组合(就是所有的向量 Cx)。

我将 0 包含进去,所以你看到 C 产生"中心差分",Cx 的行 i 是 x_{i+1} (中心的右)减去 x_{i-1} (中心的左)。以下是 4×4 的例子:

惊讶的是这个矩阵现在是可逆!第一行与最后一行告诉你 x_2 与 x_3 ,中间的行给出 x_1 与 x_4 。可以继续往下写出逆矩阵 C^{-1} ,但是 5×5 矩阵又变成奇异(不可逆)...

问题集 1.3

1 求线性组合 $3s_1 + 4s_2 + 5s_3 = b$,然后将 b 写成矩阵-向量的乘积 Sx,其中 3, 4, 5 在 x 里面。再计算三个点积: (S 的行)·x:

$$\mathbf{s}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 $\mathbf{s}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ $\mathbf{s}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ 进入 S 的列

2 求解 $S_{v} = b$, 其中 S 的列是问题 1 的 s_{1}, s_{2}, s_{3} :

S是一个总和矩阵。前五个奇数的总和是。

3 求解以下三个方程式,使用 c_1, c_2, c_3 表示 y_1, y_2, y_3 :

$$S\mathbf{y} = \mathbf{c} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

将 y 写成矩阵 $A = S^{-1}$ 乘向量 c,请问 S 的列是无关或是相关?

4 当 $x_1 = 1$ 时,什么样的组合 $x_1 w_1 + x_2 w_2 + x_3 w_3$ 可以得到零向量:

$$\mathbf{w}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad \mathbf{w}_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \qquad \mathbf{w}_3 = \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$$

这些向量是无关或是相关?这三个向量落在一个_____上。这三个列向量构成的矩阵 W是不可逆。

5 矩阵 W 的行产生三个向量(我把他们写成列向量):

$$r_1 = \begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix}$$
 $r_2 = \begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix}$ $r_3 = \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$

线性代数说这些向量必须落在同一平面,必定存在许多组合 y_1 **r**₁ + y_2 **r**₂ + y_3 **r**₃ = **0**, 求出两组的 y's。

6 什么样的 c 会得到相关的列,使得列的一个组合等于零。

$$\begin{bmatrix} 1 & 1 & 0 \\ 3 & 2 & 1 \\ 7 & 4 & c \end{bmatrix} \begin{bmatrix} 1 & 0 & c \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} c & c & c \\ 2 & 1 & 5 \\ 3 & 3 & 6 \end{bmatrix} \quad \stackrel{}{\underline{\begin{subarray}{c} 4 c \neq 0, }} \quad \text{可能永远无关吗?}$$

7 如果列组合得到 Ax = 0,则每一行都有 $r \cdot x = 0$:

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad 以行来看 \quad \begin{bmatrix} \mathbf{r}_1 \cdot \mathbf{x} \\ \mathbf{r}_2 \cdot \mathbf{x} \\ \mathbf{r}_3 \cdot \mathbf{x} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

这三个行也落在同一平面,为什么这个平面与x垂直?

8 现在讨论 4×4 的差分方程式 Ax = b,求出四个分量 x_1, x_2, x_3, x_4 ,再将解写成 $x = A^{-1}b$,求出逆矩阵:

$$A\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = \mathbf{b}$$

- 9 4×4 的循环差分矩阵 C 为何? 它在每一行与每一列都会有 1 与-1。求出所有的解 $x = (x_1, x_2, x_3, x_4)$ 使得 $Cx = \mathbf{0}$ 。 C 的四个列会落在四维空间的一个三维超平面上。
- 10 前向差分矩阵∆是上三角形:

$$\Delta z = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} z_2 - z_1 \\ z_3 - z_2 \\ 0 - z_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \boldsymbol{b}$$

利用 b_1, b_2, b_3 求 z_1, z_2, z_3 。 $z = \Delta^{-1} b$ 的逆矩阵为何?

- 11 证明前向差分 $(t+1)^2 t^2$ 是 2t+1 = 奇数。如同微积分所述, $(t+1)^n t^n$ 会从 t^n 的导数开始,就是 。
- 12 **已解范例**的最后一行显示方程式(16)里面的 4×4 中心差分矩阵是可逆,求解 $Cx = (b_1, b_2, b_3, b_4)$,找出 $x = C^{-1}b$ 的逆矩阵。

挑战问题

- 13 前述说明 5×5 中心差分矩阵不可逆。请写出 $5 \wedge Cx = b$ 的方程式,求出左侧的线性组合得到零。 b_1 , b_2 , b_3 , b_4 , b_5 的何种组合必须等于零?(这 5 列落在 5 维空间的 4 维超平面上,难以视觉化。)
- 14 若(a, b)是(c, d)的倍数且 $abcd \neq 0$,证明(a, c)是(b, d)的倍数。这个结果非常重要,这两列落在同一条直线上。你可以先用数字看看 a, b, c, d之间的关系。方程式会得到:

若
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
有相关的行,必定有相关的列。